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Analysis and Quanti�cation of Repetitive Motion in
Long-Term Rehabilitation

Loreen Pogrzeba, Thomas Neumann, Markus Wacker, and Bernhard Jung

Abstract�Objective assessment in long-term rehabilitation
under real-life recording conditions is a challenging task. We
propose a data-driven method to evaluate changes in motor
function under uncontrolled, long-term conditions with the low-
cost Microsoft Kinect Sensor. Instead of using human ratings as
ground truth data, we propose kinematic features of hand motion,
healthy reference trajectories derived by principal component
regression, and methods from machine learning to analyze the
progression of motor function. We demonstrate the capability of
this approach on datasets with repetitive unrestrained bi-manual
drumming movements in 3-dimensional space of stroke survivors,
patients suffering of Parkinson’s disease, and a healthy control
group. We present processing steps to eliminate the in�uence
of varying recording setups under real-life conditions and offer
visualization methods to support clinicians in the evaluation of
treatment effects.

Index Terms�depth sensor, human motion, kinematic features,
rehabilitation, movement quality assessment.

I. I NTRODUCTION

NEUROLOGICAL de�cits as a consequence of a stroke or
Parkinson’s disease have sustained impact on daily life.

They entail symptoms such as reduced mobility, paralysis or
rigidity of limbs, higher risk of falling and pain. The need
for long-term rehabilitation is apparent, as stroke is �a major
cause of long-term disability� [1] and Parkinson’s disease as
a chronic disease involves deterioration of symptoms.

The advent of low-cost, mobile, and easily applicable mark-
erless motion recording systems like the Microsoft Kinect
depth sensor (short: Kinect sensor) opens up new �elds of
application in therapy and rehabilitation, especially in elderly
care, stroke rehabilitation, and exergaming [2], [3]. Current
research focuses mainly on interdisciplinary short-term studies
under controlled laboratory conditions, with motion analysis
results being correlated with qualitative clinical assessment
scales as gold standard. However assessment scales are depen-
dent on the ratings and experience of the evaluators, thus can
be subjectively distorted [4]. They may not coercively correlate
with the results from motion analysis, because the chosen
scales could be too coarse or too general, thus not responsive
enough for long-term tracking of symptoms or motor changes
[5], [6], [7].
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In addition, previous studies in rehabilitation often focus
on uni-directional trajectories, for example reaching move-
ments with prede�ned start and end points in space. Real-life
rehabilitation settings are usually much less constrained, con-
taining unpredictable reaching targets in space and potentially
asymmetric execution (forward and backward motion). Few
studies have explored such a real-life rehabilitation setting.
Here, we exemplarily study the quanti�cation of repetitive
motion from recordings of treatment sessions with function
oriented music therapy (FMT). FMT is a non-verbal neuro-
muscular therapy based on repetitive drumming movements in
changing setups of instrumentation [8], [9]. FMT is targeted
to treat diverse neurological de�cits, such as stroke (S) and
Parkinson’s disease (PD). In a long-term rehabilitation setting
like this, the aim is not to detect diseases at an early stage,
but instead to offer computational tools that help monitoring
the rehabilitation progress as unobtrusively as possible.

Such a real-life scenario poses several technical and method-
ological challenges: we require a method of normalization
that allows for an analysis not only invariant under varying
recording conditions, but also invariant to changing motion
tasks during therapy. Classical approaches record motion from
an impaired patient group (PG) and compare it to data of a
healthy control group (HG) [3], [10]�[13].

To monitor and quantify long-term rehabilitation progress,
the quality (the �healthiness�) of a given motion needs to be
estimated from kinematic features. To obtain such a measure,
we propose a model that predicts a probability between
�healthy� and �impaired� from the kinematic features of a
given motion. The model thus provides a continuous score
of �healthiness� as a corridor of accepted motor function.
Notably, this model is trained only from sets of healthy and
impaired motion. It does not require subjective and potentially
distorted therapist scores for calibration. Monitoring the model
scores in an ongoing therapy allows us to estimate the recovery
of the patient. We show that, both for stroke and Parkinson’s
patients, model scores successfully quantify the tendency of
rehabilitation of a patient. A therapist in practice could thus
use our model to quickly check whether symptoms improve
or even disappear over the course of long-term therapy.

In summary, our contributions are:

1) We describe a framework for recording, automatic cal-
ibration, and analysis of repetitive motion in real-life
conditions. We build a reference trajectory model to
correct for varying setups and propose three kinematic
features that quantify variability and consistency of a
given repetitive reaching/drumming motion.
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2) We show that a probabilistic model trained from a set
of �healthy� and �impaired� motion can be used to
monitor the recovery of patients towards �healthier�
motion during long-term therapy.

3) Our study is the �rst to offer a computational, motion
data based assessment of rehabilitation success of FMT,
based on a novel dataset of drumming motion recorded
in unconstrained therapy sessions. We quantify the mo-
tion of both stroke and Parkinson’s patients.

II. RELATED WORK

Motion analysis, in particular quanti�cation of motion qual-
ity, have been studied in various contexts: for personalized
rehabilitation systems [6], [14], ergonomics [15], [16], for
measuring motor symptoms of Parkinson [10], [17], [18] and
stroke patients [5], [11]. For our speci�c use case in FMT,
therapeutic observation criteria have been transferred [8], but
not yet evaluated for automatic motion analysis. Current re-
search in motion quanti�cation is oriented towards establishing
correlations between kinematic features and human ratings
(e.g., the Wolf Motor Function Test (WMFT) [12] for stroke
survivors) to build evaluative or predictive models. In contrast
to such disease-speci�c motor performance scores, we ana-
lyze drumming motion during unconstrained, long-term music
therapy by implicitely modeling a �healthyness� score without
relying on human ratings. Note that drumming movements can
be seen as compositions of multiple reaching tasks, therefore
our framework also generalizes to motion analysis for reaching
tasks and hopefully inspires future work also in this context.

To measure human motion, most studies rely on expensive
marker-based systems. Recently, low-cost sensors such as the
Kinect sensor have been shown to achieve comparable results
[19]�[21] in various applications settings [2], [3], [22], [23].
We argue that the use of such a sensor in a real-life reha-
bilitation setting not only poses big challenges due to sensor
noise and limited accuracy, but also causes problems due to
uncontrolled recording conditions that have to be factored into
the analysis framework. Our framework normalizes the data
even in such uncontrolled setups.

To analyze the movements recorded from multiple subjects,
many existing approaches explore the use of kinematic features
for assessing movement quality: Venkataramanet al. [6] use
curvedness, speed, and jerkiness; Daset al. [17] use frequency-
domain features to measure tremor; Chenet al. [11] explore
features such as temporal, velocity, and trajectory pro�les;
Adams et al. [24] analyze duration, normalized speed, and
movement arrest period ratio. These kinematic features are
usually combined to predict movement quality scores using
machine learning. Leightleyet al. [25] evaluate machine
learning methods to �rst classify motion type, then compute
deviations from a healthy control group to label movements as
�good� or �poor�. Mostafavi et al. [26] extensively analyze the
relationships between kinematic features and clinical scores
for reaching, matching, and object hit tasks in stroke survivors.

We extend the general idea of interpretable kinematic fea-
tures in the case of drumming motion, for measuring long-term
rehabilitation effects, and for a patient group with a very wide

spectrum of characteristics poststroke and with Parkinson’s
disease.

The methods mentioned above typically learn a mapping
directly from kinematic features to therapist ratings from a
dataset of impaired and healthy patients that perform the same
motion. Essentially, healthy motion is modeled in the kine-
matic feature space. As an alternative, some methods model
healthy trajectories directly: For example, Oleshet al. [5]
model motor function of the non-paretic (healthy) arm using
Principal Component Analysis (PCA), reconstruct the other
hand motion within this PCA space, and measure the differ-
ence (and vice versa). This gives a quantitative scale that works
well for patients with hemiparesis, but it strongly �uctuates
over movement types. Models that decompose motion into
sparsely-activated motor primitives can also be used, e.g.,
to reveal problems in coordination [18]. Burgetet al. [10]
train a mathematical model of individual joint motion and
show reduced activation of proximal joints for PD patients.
Som et al. [27] generate an �optimal� trajectory syntheti-
cally as the shortest geodesic on a manifold that respects
motion speci�c constraints of the human body. This allows
for completely unsupervised modeling of motion, but cannot
capture factors such as acceleration and energy ef�ciency,
factors which are important for modeling natural human
motion. Trajectories generated from recorded data overcome
this limitation, for example by �tting Bezier curves to MoCap
data [16] or by generating human gait trajectories based on
variables such as gender [28] in a data-driven way. We argue
that generative models like these can be used to factor external
variables in reaching movements (such as start/end point),
and show how such a model can be tied to the construction
of kinematic features, thereby enabling real-life long-term
rehabilitation analysis and monitoring without interfering with
therapists.

III. F RAMEWORK DESIGN

To quantify human movements over uncontrolled long-
term treatment we present a framework which utilizes four
steps. First, the trajectories are transformed into a uniform
spatial representation to allow consistent analysis also under
varied spatial recording conditions. Second, a reference model
is built which synthesises healthy trajectories depending on
the parameters of the recorded impaired movements. Third,
kinematic parameters are calculated and forth, used for the
estimation of treatment effect.

A. Representation of Trajectories
Skeletal data consists of a time-ordered sequence of joint

positions in Cartesian space, also named astrajectories. Let
� p j �t� >R3; t >T � denote a set of joint trajectories at mea-
sured time pointsT ‘ R� and for different jointsj > J .
For our use case we analyze the movements of two joints of
interest,J � �lh; rh �, namely the left (lh) and right hand
(rh). We de�ne repetitive drumming actions as composed
movements, which are built from a number of repetitive
reaching actionsr (cf. Fig. 1a). For a 2-drum-setup we arrange
two reaching actions in a singlemotion cycle(cf. Fig. 1b) and
combine ten motion cycles to aset.
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Fig. 1. (a) Schematic representation of reaching trajectoriesr i (i >N) of one
skeletal jointj (here, one of the hands) in camera coordinates for a 2-drum-
setup. (b) Exemplary position-time graph, with continuous reaching actions
r i across timet for a 2-drum-setup. The reaching actions start and end in
points of time labeled with onsetsok (k > N) and are combined into motion
cyclesm l (l >N).

B. Registration of Onsets
Drumming movements are decomposed intoR >N� reach-

ing actions. Each reach starts (onset) and ends (offset) when
a drum is hit, i.e., at the distinct points in timeO ‘ T , with
O � �o 1; o2; : : : ; oR �. Since drumming continues immediately
after a hit, onsets and offsets coincide in our scenario. Con-
sequently, in a 2-drum-setup where the patient hits each drum
alternately, we have the �odd� onsets where the �rst drum is
hit, Tf irst � �o 1; o3; : : : ; oR � 1� (cf. Fig. 1b), and the �even�
onsets when the second drum is hitTsecond � �o 2; o4; : : : ; oR �.
Each hand can be modeled separately in this way, even if both
hands participate in drumming. An example is shown in Fig. 5:
although three drums are involved, each hand is alternating
between the center and one of the outer drums, thus each
hand still performs a 2-drum motion.

For our datasets (cf. Sec. IV-A) we register onsets manually
based on the image data. We here look at symmetric drumming
motion, so we select one onset for both hands: if the impaired
hand (left or right) is known, we register the onset of the
healthy hand. Otherwise (e.g., for healthy subjects) we take the
frame where both hands are at minimal y-position. If the hands
move asymmetrically, this will in�uence the trajectories’ shape
after processing (as described next), consequently making this
asymmetry detectable by kinematic features (see III-E).

C. Processing
We use a �ve-step, fully automated processing and cali-

bration routine to transform raw motion data into a uni�ed
trajectory representation. First, we use a Savitzky-Golay �lter
of order 3 following [29] to smooth the movements. Second,
we correct for varying height of the sensor, which possibly
arised during recording of different sessions: The height of the
sensor in�uences the pitch angle in camera space, so we need
to perform a rotationR x around thex-axis by the angle� .
To determine� we measure the angle between the unit vector
y � �0; 1;0� � and the spine (gray lines in Fig. 2) at the start
of the motion cycles, atTf irst , where we can assume the
�most upright� posture. Averaging over all sets within one
setup gives a robust estimate of the actual pitch of the sensor,
cf. Fig. 2b, without requiring any manual calibration effort.

(a) Before Processing (b) After Processing

Fig. 2. Upper body joints in side view at odd onsets in (a) with different
orientations due to varied recording conditions before and in (b) with matching
orientation after processing. Spine joints in gray, left/right body side in
blue/red, respectively.
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Fig. 3. (a) Captured (real) drumming trajectories of the left (blue) and right
(red) hand joints of the patient group (PG) and (b) predicted trajectories of
healthy subjects from the spatial coordinates of the PG in 3d.

Third, drumming trajectories for each joint are translated so
that they start at the origin. Fourth, reaches are resampled
to obtain T̂ � 16 equally spaced sample points from the raw
trajectory, using cubic spline interpolation. This corresponds to
the average sample rate of29:8 Hz of the raw data and so the
resampled trajectories reproduce the actual motion trajectory
with high �delity, cf. Fig. 4. Fifth, motion cycles are combined
into sets. After this, all motion cycles start and end in the origin
as depicted in, e.g., Fig. 3. This pipeline would also work for
joint angles, but here we chose the trajectory representation
of motion, as it is commonly used in the context of reaching
and rehabilitation [6], [11], [14], [17]. Trajectories preserve the
spatial conditions of the reaching actions, are easily visualized
and lend themselves to application of scoring principles of the
widely used WMFT [12] assessment for stroke survivors.

D. Reference Trajectory Model

The preprocessing so far cannot suf�ciently level out dif-
ferences in the shape of the trajectories, which might be
signi�cantly different depending on the actual 3d location of
the drums or, in general, of any reaching target [30], [31].
This is also clearly visible in Fig. 3a. Instead of forcing the
therapists to place the drums exactly in the same 3d location
for every patient to make patients comparable, we propose
to train a model that synthesizes reference trajectories from
an additional dataset, named �Setup Variation� (SV). In this
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(a) All impaired subjects (PG). (b) All healthy subjects (HG).

(c) Subject S8 from patient group (PG) after 19 weeks of treatment. (d) Subject S28 from healthy group (HG).

Fig. 4. Real (top row, green), predicted (middle row, blue) and subtracted (bottom row, red) position data per patient group and for selected single subjects.
Each row contains trajectories of two reaches inx, y andz direction, which were resampled to contain̂T time steps per reach. Vertical dotted lines indicate
onsets of reaches. Circle markers indicate points in time, where variability features are calculated.

dataset, a part of variant features of a reaching or drumming
setup is reproduced and systematically changed by healthy
subjects.

From this, a model is learnt for a speci�c jointj from NSV

recorded trajectories that all went to different drum positions.
As described previously, reach trajectories are preprocessed
and resampled to contain̂T time steps. This allows us to
collect all reaches into matrixX ˆj •

SV > RN SV � 6T̂ � 3, with each
row containing the 3d positions oftwo reaches per motion
cycle with forward and backward motion for the 2-drum-
setup. The offset of3 counts for onsetsTsecond (in Fig. 4 at
timesT̂), that are part of multiple reaches, i.e., ending points
of forward reaches and starting points of backward reaches.
We then decompose the healthy trajectories intoK principal
componentsck >R6T̂ � 3 and weightsw k >RN SV ,

X SV � ˆx mean •—�
K

Q
k �1

w k ˆc k •— : (1)

Linear regression is used to model the relationship between
PCA weights and variable parameters, so thatw k � Y SV ��� k .
In our case,Y SV >RN SV � 4 contains the 3d joint positions at
the even onsets,Tsecond , as a proxy for the real drum position
in 3d space, plus a constant to model the linear regression
bias. To prevent over�tting and to increase robustness to
outliers, we collect multiple (here, ten) motion cycles for each
drum position inY SV and average the resampled trajectories
in X SV . After learning ��� k , we can synthesize a trajectory
�x >R6T̂ � 3 for any given target drum locationy >R4 (values
for x; y; z, and a constant), thereby generating a trajectory that
“simulates” healthy drumming to that target location by:

�x � xmean �
K

Q
k �1

y —��� k ck : (2)

Fig. 3 contrasts the real trajectories of the patient group (a)
with predicted reference trajectories�x computed using Eq. (2)
in (b). We can now subtract the reference trajectory from the
patient data to even better reveal the irregularities visible in
Fig. 3a, which is what we will show next. At �rst glance,
this idea seems speci�c to our drumming use-case, but in fact,
it can be easily extended simply by adding more columns to
Y SV (e.g., location of a second drum, walking speed for gait
analysis, etc.). The reference model is also invariant under
speci�c motion representation, joint angles in matrixX SV

would also work.

E. Kinematic Features

We evaluate motor changes over long-term treatment with
the help of three groups of kinematic features. The featuresf
are calculated per set, for each jointj >J � ˜lh; rh •, for all
subjects and sets of the patient group (PG) and healthy group
(HG). They are collected in the matrixF > RN P G� HG � 2F ,
whereNP G� HG denotes the number of sets contained in the
datasets (PG, HG) and there areF features for each joint.
The features are inspired by criteria of the Functional Ability
Scale, which is often used in stroke assessment as a part of
WMFT. It rates amongst others completion time, precision
and �ne coordination of the upper extremity [32]. The �rst
two features are also motivated by the research of Cirstea
and Levin [33], who observed that pointing movements of
stroke survivors involve increased movement variability and
















